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Abstract 

We compare three “intelligent” configuration search methods against random 

search on a scalable model problem to measure relative performance over a range of 

problem sizes. Our model problem is a 2-D polymer composed of atoms connected 

by rigid rods in which all pairs of atoms interact via Lennard-Jones potentials. 

The global minimum energy can be calculated analytically. The search methods 

are simulated annealing (S A), genetic algorithms (GA) and Nelder-Mead simplex. 

Both GA and SA perform progressively better relative to random search as the 
problem size increases while simplex performs progressively worse. We find that 

SA and GA have complimentary strengths which implys that a hybrid GA-SA 

method would be more efficient than either one alone. 
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1 Introduction 

When it was learned in the middle of this century that all terrestrial life is built 

from just a few varieties of linear biopolymers, it seemed that the secrets of life 

itself were close at hand. These early hopes were largely dashed as it became 

clear that the properties of these molecules are as much dependent on their folded 

conformation (tertiary structure) as on their linear sequence (primary structure). 

Despite several decades of research, the tertiary structures of proteins and nucleic 

acids have proven exceedingly difficult to obtain through either experimental mea- 

surement or theoretical prediction, Similarly, the properties of man-made polymers 

are more dependent on the in-situ conformation of the chains than on the chemical 

properties of the monomeric units. Clearly access to the tertiary structure of poly- 

mers is a major bottleneck to the progress of materials science and biochemistry. 

Experiments and theoretical arguments suggest that the biologically active ter- 

tiary structures are those of low free energy. Hence, the search for the biologi- 

cally important structures is the search for conformations whose energy are close 

to the the global minimum on the free energy hypersurface. A successful search 

met hod needs to find structures close to the global minimum with high probability y. 

An enormous repertoire of optimization methods have been developed during the 

past several decades[l]. These include gradient methods such as Newton- Raphson, 

stochastic methods such as simulated annealing[2, 3, 4], and generalized down- 

hill methods such as Simplex[5]. It is convenient to distinguish methods on the 

basis of how much information they collect about the potential energy surface dur- 

ing the optimization process. Those that progressively “learn” about the global 

structure of the search space we call “intelligent”. Using this definition, the lowest- 

intelligence method is pure random search. Molecular configurations are randomly 

chosen, the energy is calculated at each point, and the lowest minimum energy 

conformation is saved. In practice, pure random search is ineffective due to the 
high hills in the potential surface. Instead gradient descent methods are used to 

find a local minima in the vicinity of the random starting point. 

Most optimization methods are by our definition intermediate-intelligence meth- 

ods. That is, they probe locally in the search space for minima, The local nature 

of these methods means that while they are very efficient, they must be started 

from many points in the hyperspace in order to find the global minimum. 

Examples of intelligent optimization methods are the so-called Genetic Algorithms[6]. 



This is a new class of optimization methods based loosely on Darwinian evolution.

A large population of initially random bit-strings, each encoding a point on the

hypersurface, are evolved with selection pressure favoring the low energy individu-

als. This method is intelligent because the population globally samples the search

space and implicitly refines the search to successively smaller portions of the space

as it evolves. Moreover, the individual members of the population exchange infor-

mation about the distant points in the hypersurface via the evolutionary crossover

operator.

Intelligent optimization methods necessarily involve more overhead than simpler

methods. The object of this paper is to evaluate whether these methods are efficient

compared to random search on a scalable, well-characterized model of the polymer

folding problem. Our model molecule is a 2-D polymer in which nearest neighbors

are connected by rigid rods and all other pairs of atoms are connected by Lennard-

Jones potent ials. The lowest energy states of the polymer are hexagonally packed;

however there are many compact, but higher energy configurateions.

The methods we compare are simulated annealing [2, 3, 4], genetic algorithms

(GA’s)[6] and the Nelder-Mead Simplex algorithm[5]. Each method generates ini-

tial starting points that are passed on to a downhill gradient routine. Our bench-

mark is random search in which a gradient method is started from random initial

configurations, Our model problem scales in a well defined way so that we can see

how the relative performance of the methods change with problem size.

2 Computational Methods

2.1 Model problem

As a model problem, we have looked at a two dimensional polymer consisting of

IV. atoms connected by rigid rods of unit length. The rods are free to rotate about

the atoms at their ends. The configuration of the chain is completely specified by

(fV@-2) angles ~. The energy of interaction to be minimized is given by a pairwise

additive function of the atom-atom distances J?ij. Bonds are allowed to cross which

can lead to the formation of complicated, intertwined configurations which we refer

to as being knotted. Our energy function uses Lennard-Jones potentials between
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each pair of atoms

v(@[~l)= ,;, [(;)12-2 (;)’]~ (1)

For our model problem, we chose the value of a equal to 1, which places the

potential minima for a given pair of atoms at unit distance. The global energy

minimum structures are hexagonally close packed with unit spacing. However, for

our polymer to reach the minimum energy configurateion, it must arrange itself in

one of a small number of special ways consistent with the constraints imposed by

the fixed-length bonds. One of these special configurations for the case of 19 atoms

is shown in Figure la. We will concentrate on 19, 37 and 61 atoms because these

can form maximally compact hexagonal structures of radius 2, 3 and 4.

With this energy function Eq. (1), there are two classes of minima, knotted and

unknotted. Figure la and lb show unknotted configurations and Figure lC shows

a knotted configuration. Because it costs energy to pull an atom through a knot,

with a barrier of about 7750 energy units, knotted configurations will tend to stay

knotted using small step-size gradient methods. Simulated annealing (Section 2.2)

can undo the knots by taking steps large enough to cross the barrier into the

next minimum. Such barriers do not directly affect the genetic algorithm method

(Section 2.3) because it does not search along a one dimensional path. The simplex

method (Section 2.4) can also jump over barriers. Since each knot imposes a high

energy penalty, most of the methods will quickly find at least a few extended, totally

unknotted configuration. These can then relax into low energy compact structures.

The second class of minima have the chain unknotted and laid out on a hexagonal

grid with each atom having 2-6 unit distance nearest neighbor interactions, but

with the configuration not being maximally compact. A sample local minimum
structure for the 19 atom case is shown in Figure lb. To rearrange from this to the

most compact configuration requires breaking several non-nearest-neighbor bonds

and reforming others in a highly specific way.

We can make estimates of what portion o{ configuration space is taken up with

knotted configurations as a function of number of atoms. To do this, we simply

choose a large number of random configurations and count how many have one or

more knots. For 19 atoms, the percentage with no knots is 0.058. The percentages

for 37 and 61 atoms are 0.0012 and N 10-7 respectively, So a first measure of

the robustness of an optimization method is how often it can find any unknotted

configuration having started from a random one. A second measure is how low in
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energy is the distribution of unknotted configurations. A third and final measure

is the nearness to the global energy minimum of the lowest energy structure found.

2.2 Simulated Annealing

Simulated annealing (SA) is a widely used method. We largely follow the proce-

dures given by Wilson and co- workers [3, 4]. A molecule starts at some point in

configuration space and takes Monte Carlo steps where the value of one angle is

changed by a small amount with each step. If the energy goes down, a step is ac-

cepted. If the energy increases, the step is accepted with probability exp[–AE/kT]

where Al? is the change in energy, T is the temperature and k is Boltzman’s con-

stant, The temperature starts at a relatively high value and gradually cools down.

A large number of Monte Carlo steps is performed at each temperature, typically

200-1000.

Our starting temperature was chosen to be high enough that >80% of steps were

initially accepted. The step sizes were chosen from a Gaussian random distribution

of mean S and standard deviation o. We use an exponential annealing schedule

so that Ti+l = ~Ti where ~ < 1. If at some temperature, the acceptance ratio

drops below 25%, the value of a is halved. At the end of each annealing run, the

configuration was further minimized using several steps of a non-linear conjugate

gradient (CG) routine[8] which typically provided a large decrease in energy over

the final annealing result. We made a number of runs from different initial starting

points in configuration space. The parameters values used were k = 1; Tinitial= 20;

Tfi..l = 1; number of steps per temperature= 250 (~= = 19) or 1000 (IV. = 37 and

61); number of temperatures=30 (IV= = 19) or 50 (Na = 37 and 61). The value of

a was chosen to cool from Tinitialto Tfina[over the appropriate number of steps.

The values of S and o were O and 10 degrees.

2.3 Genetic Algorithms

Genetic algorithms[6] (GA) are optimization methods based on several strategies

from biological evolution which appear to have been remarkably successful in pro-

ducing organisms that efficiently exploit their environment. The first such strategy

is the use of a breeding population in which individuals who are more “fit= in some

sense have a higher chance of producing offspring and passing their genetic infor-
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mation onto succeeding generations. The second is the use of crossover in which

a child’s genetic material is a mixture of his parents’. The third is that of mut a-

tion, meaning that genetic material is occasionally corrupted, leading to individuals

who may or may not be more fit than they would have been otherwise, but always

maintaining a certain level of genetic diversity in the population.

In practice, a typical GA is implemented as follows. An individual is coded for by

a ‘gene” which is a bit string of length Ng that can be uniquely decoded to give a

set of physical parameters (angles in the case at hand). A fitness function is defined

that can discriminate between individuals. For molecular structure optimization

the fitness is the total energy. An initial population of JVPOPindividuals is formed

by choosing IVPOPbit strings at random, and evaluating each individual’s fitness.

Subsequent generations are formed as follows. All parents are ranked by fitness

and the highest fitness individuals are placed directly into the next generation with

no change. Next pairs of individuals (including the highest fitness individuals) are

selected, with probabilities based on their fitness, and their genes are crossed over to

form genes of the remaining individuals in the next generation. Crossover consists

of taking some subset of the bits from parent 1 and the complimentary set of bits

from parent 2 and combining them to form the gene of child 1. The remaining

bits from the two parents are combined to form the gene of child 2. Additionally,

during replication there is a small probability of a bit flip or mutation in a gene.

This serves primarily to maintain diversity and prevent premature convergence in

which a single very fit individual takes over the entire population. To bound the

magnitude of the effect of mut ations, the binary genes are usually Gray coded. It is

important to emphasize that crossover is the key feature that distinguishes the GA

as an intelligent optimization method. If crossover is ineffective, GA degenerates

into a random walk search. The lowest fitness individuals in each generation may

be discarded and replaced by children of more fit individuals. See Figure 2 for an

illustration of the crossover and mutation steps. Many variants of the algorithm

exist in the literature, but the basic model outlined here is representative. We use

a modified version of the C!enes~s[7] code for the calculations reported here.

As with simulated annealing, we found that the addition of conjugate gradient

minimization to the GA to be necessary, Because large regions of configuration

space are very high in energy due to one or more pairs of atoms being close to

one another (whether or not the configuration is knotted), it is necessary to relax

each configurateion prescribed by the GA using a few steps of nonlinear conjugate

gradient optimization[8]. The energy used for fitness ranking is the relaxed value.
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We can also return the angles of the relaxed configuration to the GA. By returning

the angles (a “Lamarkian” process because a child can acquire “knowledge” learned

by the parent) we speed up the convergence of the method. We used the default

parameters supplied by Genesis with the exception of the population size, NPOP,

which was chosen to be 50.

2.4 Nelder-Mead Simplex Method

Another search algorithm we have examined is the Nelder-Meacl simplex method[5,

8]. The method derives its name from the idea of iteratively constructing a simplex

(a geometrical figure consisting of n+ 1 vertices, their interconnecting line segments

and faces) in n-dimensional space and searching for a minimum by comparing

function values at the vertices of the simplex. The Nelder-Mead simplex method

starts by generating a simplex from an initial guess supplied by the user. At the

beginning of each iteration, the algorithm ranks the vertices from best to worst in

terms of function value. The method then searches for a minimum by looking in

directions generated by the algorithm in one of three ways: a reflection step, an

expansion step, or a contraction step.

The method first generates a trial point by reflecting the simplex about the worst

point. The function is evaluated at the reflected point z, and compared against

the best point. If the value at the reflected point is lower than the best point, then

the reflected point is tentatively accepted. Before accepting the reflected point

though, an attempt is made to take a longer step in this direction. The reflected

simplex is expanded and the function value at the point, z,, generated by this step

is compared against the reflected point, with the better of the two points replacing

the current worst point. The reflected step could however generate a vertex at

which the function value is worse than the best point. The algorithm has two

options in this case. If the reflected point is better than the next to worst point

then z, is accepted and it replaces the worst point. In the second case, the simplex

is contracted and a new iteration begins.

The main advantage of the simplex method is the simplicity with which it can

be coded, The main disadvantage is that in practice it only works well for small-

dimensional problems, as our experiments verified. Although the simplex method

was fairly robust at initially decreasing the function value, the method tended to

stall out while it was still far away from the solution. So, as with SA and GA’s, we
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only used the simplex method as a way to generate initial guesses for more powerful

local minimization routines. A nonlinear conjugate gradient method [8] was used

for both GA and SA so we also used it with simplex, However, to see if other

gradient methods could do a better job of searching locally, we also had the simplex

algorithm drive a truncated Newton method. The particular implementation of the

Newton method we used, called BTN (block-truncated Newton), was developed by

Nash[9]. The BTN code is a general purpose software package for the solution

of unconstrained nonlinear optimization problems. The algorithm employed is a

variation of the standard Newton method and differs only in the approach used for

solving the Newton equations. To avoid the cost of constructing and factoring the

Hessian matrix, the BTN code uses an iterative technique known as the Lanczos

method. This method is related to the conjugate gradient method for solving

systems of linear equations. Since the convergence rate of the Lanczos method

is dependent on the condition number of the linear systems, the Lanczos method

is usually used in conjunction with a preconditioned. The BTN package provides

several options for preconditioning, all of which are automatically computed from

information gathered during the iteration process. Although the preconditioners

can be reset, the documentation advises against this option. In our experiments

however, we found that the BTN method worked best whenever the preconditioned

was reset periodically, and it was not unusual to have a factor of 2 decrease in the

number of iterations taken by resetting the preconditioned. We suspect that this

is due to the widely different character of the function in the various stages of the

optimization process.

The simplex method has two parameters that we varied: the size of the ini-

tial simplex and the convergence tolerance. The initial simplex was generated by

computing n points from the formula:

xl = xo+ Ae; , z=l, . . ..n. (2)

where 1 = 2.0, and ZO is the k;t;al guess. Various values of J were tried, but

this value worked best overall. The simplex method used two rules to determine

convergence. The first rule specified a tolerance on the difference between the best

vertex and the worst vertex. For all of our test cases this value was set to 10–5. The

second tolerance specified a reduction in the initial function value. This value was

set to 10–lO. In our version of the simplex method, we also specified a total number

of iterations (10000) it would take. Whenever the simplex method converged for

either of the two cases mentioned above, the method was restarted using the best
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vertex as an initial guess. The solution from the simplex method was then used

as the initial guess for either the conjugate gradient method or the BTN method.

The conjugate gradient method was stopped whenever the initial function value

had been decreased by a factor of 10- 3, The BTN method was stopped whenever

the magnitude of the gradient had been reduced below 10-3.

2.5 Random Search

We performed random search optimization on our model problem as a benchmark

against which we could compare the other, “intelligent” methods. For the random

search calculations, we chose a large number of random initial configurations from

which we went downhill using a non-linear conjugate gradient method[8].

3 Numerical Results

For the simulated annealing (S A), simplex and random calculations, we performed

many individual optimization starting from different randomly chosen initial con-

figurations which produced a distribution of final energies. The same set of initial

configurations was used for each method and each method was run until approxi-

mately 107 tot al function evaluations were used, including those needed to calculate

finite difference gradients. The number of individual minimization runs varied as

a function of problem size and method. For SA the numbers are 1000, 200 and 121

for 19, 37 and 61 atoms respectively; for simplex/CG the numbers are 707, 593

and 250; for simplex/BTN they are 170, 91 and 250; and for random search they

are 7300, 3502 and 932. For the two GA variants (Lamarkian and non- Lamarkian)

we used a population size of 50, initially chosen out of the standard random set of

configurate ions. The GA was then evolved over many generations until about 107

total function evaluations were used. The number of generations for Lamarkian

GA were 299, 199 and 98 for 19, 37 and 61 atoms respectively. The corresponding

numbers for non-Lamarkian GA were 169, 69 and 42.

The lowest energies found for each of the methods are given in Table I, com-

pared against the global minimum. For 19 atoms, all of the methods did quite

well, reaching within one energy unit of the global minimum. For 37 atoms, SA,

GA and simplex/CG still did fairly well but simplex/BTN did measurably worse.
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This is an artifact of the stopping criteria used in those trials — a maximum num-

ber of minimization steps was allowed with BTN which often were used before the

method found a minimum. For 61 atoms, none of the methods reached the global

minimum, although SA and GA-Lamarkian perform better than either of the sim-

plex variants. As expected, for high dimensional problems, even random search

outperforms simplex. If the CG routine starts from a random point in a region

of high gradient, it will take large steps, jumping over barriers and occasionally

finding its way into the low energy region. The simplex method starting from the

same point tended to roll downhill but not take very large steps. So it tended to

stay in the high energy knotted region, find a point with a low gradient, then defer

to the gradient routine. At this stage the gradient routine wouldn’t go very far,

resulting in a high energy final configuration.

We can look at the distributions of minima that the methods find and compare

them against one another rather than against the absolute measure of the global

minimum. In all cases, configurations with energy greater than zero are knotted

and less than zero are unknotted. Notice that the energies greater than zero are

plotted on a log scale and in particular that there are always some configurations

with energies > 1013. These are configurations that are so badly knotted up that

the local gradient routine (either CG or BTN) was unable to go anywhere. In

Figures 3, 4 and 5, we show the integrated probability distributions as a function

of energy for 19, 37 and 61 atoms respectively. For instance, Figure 3 shows that

50% of the final SA values (heavy solid line) had energies less than -40; 85% had

energies less than -20; and 100?ZOhad energies less that +100.

For 19 atoms, the low energy distributions were similar for most of the methods,

but simplex left many more knotted configurations than either SA or GA. All of

the intelligent search schemes produced better low energy distributions than did

random search. The non- Lamarkian GA showed the best performance, leaving no
knotted configurateions. Lamarkian GA actually produced fewer of the lowest en-

ergy configura~ions than any of the other methods. For 37 atoms, SA did very well

at finding a low energy distribution of configurateions, but like simplex, it left quite

a few configurations in high energy knotted states. Lamarkian GA had the most

unknotted configurations but they were higher in energy on average than those

produced by SA. Recall from Table I, though that the lowest single energy was

found by Lamarkian GA. All methods produced better low energy distributions

than random search, but random search actually found more unknotted configura-

tions overall than did either simplex or SA, for reasons alluded to above. SA and
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simplex often find high energy, low gradient points which the gradient methods are

not able to get out of. The results are much the same for 61 atoms — SA produced

a good distribution of low energy configurations, but left many (> 8070) in high

energy, knotted states. Lamarkian GA was much better at unknotting, but was

less good at getting unknotted configurations into low energy states. However, it

again produced the lowest energy individual. Simplex does poorly (and worse than

random search) on all counts — it finds few unknotted configurations and virtually

no low energy states. Of the local methods tested with simplex, BTN gave a better

distribution than CG. If the maximum allowed number of iterations for BTN was

increased it would probably also find lower absolute minima than the simplex/CG

hybrid.

4 Discussion

Points on our model energy surface can be classified into one of three regions:

(1) high energy, knotted, (2) low energy, unknotted but not minimized and (3)

low energy, unknotted and minimized. Each method can be characterized by how

efficiently it makes the transition from region 1 to 2 and how well it searches

regions 2 and 3 to find low energy points in 3. For small problems, SA, GA and

simplex were all efficient at making the jump from region 1 to 2; they efficiently

find “reasonable” regions of configurations space. For larger problems, SA and

simplex fall increasingly far behind GA in getting out of the high energy region.

Additionally, the Lamarkian version of GA becomes increasingly more efficient

than the non-Lamarkian version. A GA method is expected to behave well in

this situation due to the communication between individuals in the population

embodied in the crossover operator. Once one or two individuals find regions

significantly lower in energy than the population average, the rest of the population

gets dragged along. An encouraging point is that GA continues to be efficient at the

largest problem size we tested. GA bears some formal similarities to the simplex

algorithm which is known to fail for high dimensional problems, Hence there was

some concern that GA would also fail for high dimensional problems, which it

clearly does not.

The next requirement is that methods efficiently search the low energy regions

2 and 3 to find optimal points in 3. From Figures 3, 4 and 5 and Table I, we

see that SA and GA have complimentary strengths here — SA tends to find a
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narrow, low energy distribution of configurations, while GA produces a population

having a broader distribution of energies, with individuals both lower and higher

in energy than SA. Except for the smallest problem, simplex is outperformed by

SA and GA, Its major disadvantage is an inability to go uphill to get over barriers

and into lower energy wells. SA explicitly allows movement uphill and GA allows

it implicitly by not ruling out the production of children with energies higher than

their parents’.

We can make a few broad conclusions that should be applicable to more realistic

molecules. For small molecules, simulated annealing followed by a few steps of

conjugate gradient remains the easiest route to low energy configurations. Of

course for such small molecules, exhaustive search is feasible and clearly warranted

in some cases M nicely shown by Saunders and co-workers [10]. For larger problems,

when a small number of good (i.e. physically motivated) starting configurations

are not readily available, GA is the best method for quickly producing a population

of relatively low energy structures. However GA is not very good at fine-tuning

structures once the population is reasonably homogeneous in energy. So after a

fairly small number of generations, the best structures produced by the GA might

be passed on to a more localized search method, probably SA. We are starting

to use this approach for a set of real molecules; the results of that work will be

reported at a later date. One goal will be to continue to push up the number of

degrees of freedom and see exactly how large a molecule we can reasonably expect

to treat with these methods.

Finally, we should mention that a number of comparisons between GA and

SA have been reported which yield ambiguous results about which method is

superior [6, 11]. Many of these studies have concentrated on a single test prob-

lem or a suite of problems of similar size, Clearly the relative performance of the

methods can be strongly problem dependent. What we see here is that there is also

a large size-dependent term in the relative efficiency for the two methods which

implies that it is dangerous to extrapolate from performance on small problems to

that for larger ones.
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Table I. Lowest energies found

Method Best energy
19 atoms 37 atoms 61 atoms

Simulated Annealing -44.2 -94.8 -164.4
GA (Lamarkian) -44.3 -97.3 -166.6
GA (non-Lamarkian) -44.3 -95.1 -156.9
Simplex/CG -45.3 -96.1 -134.9
Simplex/BTN -44,3 -88.2 -129.3

Random -44,3 -95.0 -143.2
Exact -45.3 -98.3 -171.5
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Figure 1. Examples of two compact, unknotted configurations for the 19 atom

polymer and a single knotted configuration. For all unknotted local minima, the

atoms lie on a hexagonal grid. (a) One of the global minimum structures with

the maximum number of unit distance interactions. Note that there are a large

number of configurations with this same energy but with different paths followed

by the bonds. (b) A higher energy, local minimum configuration. (c) A knotted

configuration.
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Crossover

Crossover point

Parent 1: 00000 000

Parent 2: 11111 111

Child 1: 00000111

Child 2: 11111000

Mutation

00000000 ~ooooo loo

Figure 2. An illustration of the genetic algorithm crossover and mutation oper-

ators. 111the top panel, the bit strings for two parents are shown along wit h a

randomly chosen crossover point. The gene for child 1 is formed by taking the

bits to the left of the crossover point from parent 1 and those to the right of the

crossover point from parent 2. Child 2’s gene is made up of the complementary

pieces of the parents’ genes. In the bottom panel, an example of a single point

mutation to a gene is shown. In this illustration, the genes contain only 8 bits, but

in the computations described, the gene uses 10 bits for each angle, For example,

in the 19 atom case, there are 17 angles and the gene contains 170 bits.
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distribution of energies found for the 19 atom case. All

unknotted configurations have energy less than zero and all knotted configura-

tions have energies greater than zero. Note that the energies greater than zero are

plotted on a log scale. The abbreviations in the key are SA (simulated anneal-

ing), GAL (Lamarkian GA), GANL (non- Lamarkian GA), simplex+CG (simplex

followed by non-linear conjugate gradient), simplex+BTN (simplex followed by

block-truncated Newton) and random+CG (non-linear conjugate gradient starting

from randomly chosen initial points).
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